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Abstract

In these lectures I discuss the possible consequences of forming cosmic
strings and superconducting cosmic strings in the early universe. Lecture
1 describes the group theoretic reasons for and the field theoretic reasons
why cosmic strings can form in spontaneously broken gauge theories.
Lecture 2 discusses the accretion of matter onto string loops, emphasising
the scenario with a cold dark matter dominated universe. In lecture 3
superconducting cosmic strings are discussed, as is a mechanism which
leads to the formation of structure from such strings.
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1 Lecture 1: Cosmic Strings and Phase Transi-
tions in the Early Universe

Reéently, astronomers have been systematically probing the very large scale struc-
ture of our universe, and have made observations that theorists are now trying to
explain. For example, what causal mechanism could produce the primordial energy
density perturbations which are thought of as necessary to seed galaxies and clusters
of galaxies? How could the inhomogeneity represented by this large scale structure
and the galaxies be reconciled with the observed smoothness of the microwave back-
ground radiation? The interface of particle physics and cosmology has provided us
with one of the most intriguing possible solutions to this problem. The idea that phys-
ical processes occurring just 10~3% seconds after the initial big bang should directly
determine the structures being observed some 15 billion years later is staggering in
the extreme. Yet this is just what two recent particle physics ideas, used to determine
the initial density fluctuations, suggest. The first is based on quantum fluctuations
which arise in Inflationary universe models[1,2]. I will not discuss these models, but
strongly advise anyone interested in cosmology to refer to the excellent review arti-
cles already written on the subject. Albrechts’ article[2] gives a very clear physical
picture for the reasons behind inflation. The second is based on cosmic strings [3],

and a review of their properties is the goal of these lectures.

In this lecture I will discuss how the strings form and how they evolve in an ex-
panding universe. In lecture 2, I will describe how initial dénsity perturbations grow
around long strings and string loops emphasising the Cold Dark Matter (CDM) sce-
nario. In my final lecture I will discuss a very exciting model due to Witten[4], who
realised strings may be superconducting in that they can carry persistent currents.
This model was later used to account for the formation of the large scale structure in
- -our-universe, although rather than acting as seeds around which matter can accrete,
these superconducting cosmic strings act as seeds for explosions as they emit elec-
tromagnetic radiation, forming bubbles of plasma, on the shells of which the galaxies
form and ﬁagment[S]. We will see how the scenario is restricted by the dynamics of
such loops, indeed to the extent that it appears the scenario works only for a limited

range of coupling constants.



In motivating the role of particle physics in modern cosmology, I refer the reader
to some of the excellent review articles written on the subject[6]. The hot big bang
theory of the early universe successfully predicts the-Hubble expansion, the microwave
background radiation and the light element abundances. It appears to fit in nicely
with ideas of particle physics where, as the energy is increased so is the degree of
symmetry used to describe the particle interactions. At high enough energies (i.e
the very early universe when the temperature was very hot) we find the universe in
the state of maximum symmetry. This is spontaneously broken as the universe ex-
pands and cools through some critical temperature. However what is required is some
source of the perturbations essential to produce the structures we see today. Amongst
the more unusual large scale features are giant ‘filaments’ (linear overdense regions
in the galaxy distribution, about 200h;; Megaparsecs long and 10h;; Mpc across(7],
large ‘voids’, empty of bright galaxies, 120h5¢ Mpc in diameter, and galaxies lying on
the surface of ‘bubbles’ 40-60k;; Mpc across[8], (hso is Hubbles constant in units of
50kms~1). An Abell cluster is defined to be a region smaller than 3h;3 Mpc in radius
containing more than 50 bright galaxies. These clusters appear to be clustered on
scales of 100h; Mpc with a mean separation of 110hy Mpc.

Now it appears that gravity alone could not have moved galaxies and led to such
large scale structure since the big bang. Turok[9] explains this in a succinct argument
which I will follow here. Peculiar velocities (velocities relative to the Hubble flow)
grow as ¢3 in an expanding universe. As we shall see in the next lecture, in the linear
- regime, épﬂ < 1, there is a precise relation, 67 = Hy'6v where 67 is the peculiar dis-
_placement, 6v is the peculiar velocity and the Hubble radius Hy?, (characterising the

expansion rate of the universe)= 6000h;y Mpc. Observational limits placed on the

.galaxy peculiar velocities are §vya1azy < 600kms=1,which implies §r=-12h;3 Mpc,
yet structures. form on scales some 20 times larger than that. It appears then that
by investigating these large scale structures we are looking directly at the primordial
density perturbations.

It is generally believed that the early universe was characterised by a series of
phase transitions, during which a Higgs field ¢ tended to fall towards the minima of



its potential. As an example, in A¢* theory, the lagrangian is given by:

1 1 A
L=§|a“¢|2+§mg|¢|2_3|¢|4 ,my > 0 (1)

This is the familiar Mexican hat potential. At T > T, the critical temperature, the
fields are in the symmetric ‘false vacuum’ phase with < ¢ >= 0. As the universe cools
and expands through T, the ¢ field rolls to the bottom of the potential developing an
expectation value < ¢ >2= 9—'{5-, thereby breaking the symmetry. In fact it is possible

to show[19] that the effective mass of the scalar field vanishes at T, with
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or

2 2 T2
mi(T) = mift - ] (2)

We will now evaluate the spatial correlation of the ¢ field, as it determines the scale of
fluctuations in the field[32]. The minimum work required to bring the system out of
equilibrium for constant pressure and tempefa.ture is the difference in the free energy,
between the two vacuum states, AF, with a corresponding fluctuation probability
w x ezp(—FBAF)

We concentrate on long wavelength fluctuations in which the ¢ field varies slowly
across space. These fluctuations increase anomalously near the transition point. For
the case of fluctuations in the symmetric phase, < ¢ >= 0,A¢d = ¢, then to O(¢?)
we find that the change in the free energy is (from (1))

aF= [P g 12 o0 Pl Q

Now expanding ¢(r) as a Fourier series in a volume V

¢=Troue™ bk =L
we find ‘
T

|4 2 2 2 2 — |
AF = ?;[k +m (T)] I ¢k I hence <| ¢k I >= V(kz +m2(T)) (4)

Note as T — T, the long wavelength fluctuations increase. Writing the correlation

function as

G(r) =< ¢(r1)p(r2) >, r=r1—12 | (5)
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Substituting (4) into (6) we obtain:

_ /'<| b [P> eV (6)

G(r) =~ ;gr-%e:z:p(——;—), r>¢ )
where
¢ =m(T) = VX |< ¢ >| (8)

is the correlation length.? This implies that domains form of size £ ~ m~! inside
which ¢ is correlated, but outside of which there are no correlations. However as T —
T., m — 0, { — oo, it appears the domains vanish as all the fields become correlated.
There is however an upper bound to the correlation length; from cosmology ¢ <
Hy'(t) ~ t, the distance over which microscopical forces can establish correlations
in one Hubble expansion time. In fact there is a tighter constraint which sets the
scale over which the domains form. As the domains form and < ¢ >~ 0, thereis a
possibility that thermal fluctuations in the ¢ field could cause ¢ to return to its false
vacuum value, hence wipe out the domains. The free energy associated with such a

fluctuation with scale £ is, using the free energy per unit volume f,

Paf = mn)
m(T)
— | (9)

The fluctuation has a high probability so long as the free energy required is <« thermal
energy available (T). The two are equal when ﬂ)‘ﬂ ~T

1 1 A2
T: T3 md

21f gauge fields are present, as in superconductors, there is another relevant length which deter-
mines the spatial correlations between the fields. It is the London penetration depth and defines the
distance the B field penetrates the surface of the superconductor. 6= = e |< ¢ >|~ m,(T). This
scale will prove important later on. ’



(i.e. for small A, domains set in when T’ ~ T.). In fact we can then see that at thermal
equilibrium: [¢ ~ [VX < ¢ >]"! ~ [AT.]~! which is the Ginzburg length found in
superconductivity.

Hopefully the above arguments are convincing enough to suggest to you that it
is worth investigating models of the early universe. One such model was proposed
by Kibble[3] in a paper that still remains one of the clearest in the field. At very
early times the universe was very hot and the fields describing interactions were in
a highly symmetric phase. However as the universe expanded and cooled, symmetry
breaking processes would spontaneously occur, occasionally leaving behind remnants
of the old symmetric phase, (topological defects), possibly in the form of one dimen-
sional strings or vortex lines{10], two dimensional domain-walls or more likely three
dimensional monopole configurations(11]. In fact monopoles will always be produced
in a GUT symmetry breaking scheme and this is what is commonly referred to as the
‘monopole problem’. We don’t see any monopoles today, however they would have
been produced in a great number density in the early universe. As they are topologi-
cally stable, their only means of decay is through annihilation or possibly gravitational
radiation[12]. These processes are too slow to rid us of all the monopoles today, so
how can we reconcile these apparent discrepancies in the theories? Actually, although
I won’t go into further details, a possible method of eliminating the monopoles with-
out resorting to inflating them away does exist; inflation would also wipe out any
cosmic strings that had been produced prior to the inflationary period, which is bad
news for the cosmic strings. It is possible to have a sequence of symmetry breakings
which first produce monopoles and then attaches monopole/antimonopole pairs via
strings{13]. The monopole flux is confined to exist only on the string, and they rapidly
come to annihilate. ,

" Returning to the condition for the existence of these topological defects[3], con-
sider a gauge theory with-a symmetry group G, this is the.group whose:elements
- leave the full potential V, invariant when acting on it. In the phase transition this
group is broken to a sub group H as the fields pick up expectation values. H contains
the elements of the original group G which when acting on the fields ¢, leave them
with their expectation value. In fact the manifold of degenerate vacuum states (the

manifold corresponding to the state of least energy in the theory), is identified with



the coset space: M = %.3 What then does the topology of these various coset spaces
look like? For the answer we look to group theory. The condition for the existence of
strings is that the first homotopy group Hl(%) = [1;(M) be non trivial. The vacuum
manifold M must contain non contractable loops. We will look at a specific example
later, a more general class of models which contain non contractable loops has been
established including some based on superstring theories[14]. Strings are not the only
defects that form of course. In fact if £ is disconnected, then IIo(M) is non trivial and
wall like defects form where V # Vi, inside the wall. If —g— contains non contractable

2- spheres then II;(M) # 1 and the resulting defect is a monopole.

For the rest of this lecture I will concentrate on string like discontinuities.” The
most familiar strings, i.e flux tubes in superconductors correspond to the complete
breaking of an Abelian group G=U(1)[10]. The lagrangian for the theory is:

1 1 A .
L= —3FuP™ + 5| Dy [P =5 81 =)’ (10)

where F,, = dA,), D, = 8, + ieA,, A, is the gauge field, e the gauge coupling
constant, A is the self coupling of the Higgs field and 7 is the value of the symmetry
breaking Higgs field. The manifold M of ground states is a circle

M=[p| ¢ =ne"0<8<2n]

i.e V is minimised by ¢ = ne* with 4 arbitrary, corresponding to the winding number
which is an integer. We have already seen how domains could be formed during a
phase transition. Now as the system cools below the critical temperature, (T, ~ 1),
the ¢ field begins to fall to the minima of it’s potential. Domains form of size { ~ 71
due to the thermal fluctuations of the ¢ field. In these domains ¢ points in arbitrary
directions in M, but match smoothly at the boundary, with 4 varying so as to cause
defects to form on the edges common to certain domains. This is easily seen. Con-
sider one such edge where 8 varies BAy 27 in encircling the edge, i.e all around the
edge we continuously encircle Vin;,. This implies that ¢ mustvanish en that edge for
it corresponds to a region where it is not in Vj;i,. Such regions line up to minimise
the spatial gradient energy, forming a defect line or cosmic string. It corresponds to a

thin tube of vacuum energy, V(0), being stored in there. These lines where ¢ = 0 are

3For example, if (1) G = Z3, (i.e V(¢) invariant under ¢ — —¢), H =1,=> Vinin = $ =2,
(2) G=U(1),(i.ep — €®¢), H = 1,==> Vipin = § = U(1)
(3) G = SO(3), (i.ep — Oasds), H = SO(2),=> Vinin = § = 5



either in the form of closed loops or infinitely long, for if they had ends, then it would
be possible to move the circle (corresponding to Vinin) beyond the end of the string
and then shrink it continuously to a point without having to encounter the ¢ = 0
region. Hence II;(M) = 1 in that region, there would then be contractable loops and

the strings wouldn’t exist 4.

Returning to the string solutions of (10), we look for z- independent static solutions
to the field equations[10]. Figure (1) shows the resulting solutions for | ¢ | and
B = V A A as a function of the radial distance from the string. The width of the
string is' roughly my* ~ (vAn)~! where my is the Higgs mass. The string tension, or

mass per unit length:

= d’r[% | (¢ +ied)é I +%(I $ " —n')" + %.13.’] (11)
hence from V(¢): .

po~ (Vin) gt
~ 7 (12)

For example if the symmetry breaking scale is during the GUT era: [ ~ 10 or
10'%Gev] then the dimensionless parameter Gp, (G is Newtons constant), lies be-
tween 10-7 and 107%. As we shall see observational constraints(15] place a tight
upper bound, (not lower) on G of: [Gup < 107°]. There is a big difference be-
tween global and local strings. The latter, as the name implies possess a local gauge
field whose presence results in no long range interactions between the Higgs fields:
[lim, .oo(7 + i€A)¢ = 0]. Also the magnetic flux in such strings is quantised in units
of 2%: [fB.dS = § A.dl = X] where dS and dl are the area and line elements sur-
rounding a portion of string. If a global symmetry is broken, there are no local gauge
fields present, resulting in Goldstone bosons, long range forces and an infinite string
mass per unit length. Most of the work on strings has involved local strings, apart
from one important result we will come to soon.

The usual method for numerically forming cosmic strings is referred to as the

Kibble mechanism. A lattice of domains is constructed typically of size ~ ¢, ( the

4Strings could be finite in length, by connecting them to monopoles or domain walls(13]



length scale above which the orientation of the Higgs fields are uncorrelated). In-each
domain a value of ¢ € V., is randomly chosen , as this reflects ¢ choosing a minimum
energy configuration as the phase transition is passed through. After each domain
has a value in it, look at each link on the lattice and using a prescription to smoothly
vary the phases from one domain to the next, decide if there is a net winding number,
anti winding number or no net winding number, hence is there a string, anti string
or no string passing along that link. Numerical tests of this mechanism[16] indicate
that after the phase transition, about 80% of the string is in long ‘infinite’ string as
long as the box in which the simulation is performed. The rest is in a scale invariant

distribution of closed loops where the number of loops between radius r and r + dr,

dr
n(r) « oy

(i.eindependent of £). At high densities both the infinite and closed loops of string are
in the form of Brownian walks of length L ~ Iei More recently analytical approaches
have placed these predictions on firmer ground. First of all Mitchell and Turok[17],
by counting the density of states in the quantised closed bosonic string, demonstrated
all the above results. Recently David Haws, Ray Rivers and myself{18] using finite
temperature field theory, have investigated the distribution of the Higgs field around
the phase transition, also deriving the same behaviour. We are unable to derive a
precise number for the amount of infinite string length (i.e 80%), because that is a
phenomenon out of equilibrium where the canonical (and microcanonical) ensembles
break down. I will spend a little while explaining our technique, although I will also
comment on the regimes where the two results can and can not be compared.

The simplest theory to possess vortex solutions is scalar QED
£lg, 4] = 1 FuF™ 4 1 | (ButieA)s P +3m |41 —2 1414 md>0(13)
The partition function is:
Z x [ D¢D¢*DA(det M)exp(—1Is(¢, A))
where det M describes the gauge fixing, and
Isl, Al = — ff dr [ d*zLg(¢, Al
with Lz the Euclidean form of the lagrangian, (i.e write ¢[z,7] = T, d),,(:z:)e:cp(%z))

m

5. Now to O(),€?), for & « 1 we find the one loop correction to the free energy,

5It is important to note that we are not using the.mean field approach here, in that case we
would expand about constant solutions for ¢ and A



having integrated out the massive modes:

V(¢)=—lm§|¢|2[ =+ a ol

where T? = —J—,- This is then subst1tuted back into the partition function leaving
only the functlonal integration over the zero modes remaining.

Z = [ DgoD Aouezp(~F1[do, Aoy))

The statistical properties of strings around the phase transition are found by evaluat-
ing Z with string like configurations. The dominant contributions to the integral come
from field configurations satisfying the stationary equations 2 % | 6= 0 gare, A=A
0 = 0.

uddh

) ﬁ: |¢=¢.¢da¢»4“=A.¢w¢
§'Fji = —ze(¢*a 6= 49 ¢*) —e’4;| o[
(8 +ied;)’¢ = —mg(1 - )‘?5 3 l s1° ¢

The contribution of any solution to Z is found by substitution. The solution
¢ = const, A = 01is a solution of minimum energy, so gives the maximum contribution.
Well away from T, Z is well represented by this term. However as T' — T, we must
sum all maxima to the functional because the total contribution due to the large
number of non constant field configurations becomes larger. This is easy to see,
as T — T., the mass, m(T) — 0, so it becomes possible to form strings at no
energetic cost, and there is a second order phase transition. There are many string
configurations and we must sum over them all[10],® here though the solutions vary
with temperature.” In particular
lim, oo | $(r) [— 7, 7= 1;}" mj = mj(1 — %:')

At the core of the string | ¢ | vanishes, it’s th.icknessc ~ m;1. The magnetic field is

determined by m;?,

e

my, =€n = -‘/—Xm, ) (14)

9We should in principle sum over all the maxima of the functional, not just the string contribu-
tions. The approximation here has it’s analogue in condensed matter with the independent vortex
model of the A transition in liquid Helium. There the model is in quantitative agreement with
experiment, under the same assumptions we have made.

"These solutions are strictly speaking infinite string solutions. In dealing with loops of string, if
we are to use these solutions, then we must work in the regime where the radius of curvature is large
compared to the width of the string, so the string is approximately straight in any given region



and the string has an energy per unit length o = o, + oy

o, = O(n*(T)) scalarfield
e2p?

mt)

O(n*(T)) wectorfield

o, = O

AsT - T.,, 0 -0, m;'! - oo. The expression for I is substituted into Z, inter-
actions between the strings are neglected by making them non- self intersecting, and
placing them a distance 1 apart, where | is the lattice spacing which also corresponds
to the width of a string. We then have:

Z =¥, W(n)exp(—pBecln)

where W(n) denotes the number of configurations of a string of length nl.

It is now possible to use standard results from polymer physics[20], to demonstrate
the statistical properties of the strings at high and low string segment density[18].
Restricting ourselves to non self intersecting walks, at high string densities these are
well approximated by Brownian walks, but not at low densities. We find the partition

function for a ‘gas’ of loops is:

Zioop = ezp(Zy)

V o0
ezp( Z? Y nalemAnloers)

n=1

7
1

is the partition function of the single loops, and the effective string tension is defined
by:
In{a

O'eff =0T - Bl

where C is a normalisation constant, q = % high string density, ¢ low string density. Z,

a ~ 5, depending upon the type of lattice the cosmic strings are placed on. We
find that in the case of large n, both-the contributions from infinite string (Z), and
closed loops (Zi,0p) diverge for:

T > T,t
ol
In(a)

the temperature at which o.;; = 0. Above this temperature there are large fluctua-

‘tions in the ¢ field and it is no longer appropriate to describe the field in terms of string

10



like configurations. In this region fluctuations in the energy with the canonical ensem-
ble diverge (i.e the specific heat C, diverges as T — T,;), although the microcanonical
ensemble remains perfectly well behaved above the Hagedorn temperature[17]. The
reason for the breakdown in the energy is that there is an overcounting in the canoni-
cal ensemble for the number of possible string states becomes infinite. It is important
to note however that this doesn’t mean the canonical ensemble always breaks down.
For example the fluctuation in the mean number of loops of length nl, is perfectly
well defined all the way up to the Hagedorn temperature. In our case we find the
fluctuations in the Higgs field are small enough just below the string temperature to
make the canonical ensemble perfectly reasonable there. To see this, we evaluate C,,
as this gives us the fluctuations in the energy. When this is done, we find that the
critical exponent is 1 (¢ = I) and } (¢ = 3), implying the fluctuations are small,
just below T,. A very interesting result is obtained when we evaluate the partition
function for an arbitrary number of dimensions d. We then have for the case of
Brownian strings in d dimensions, ¢ = ¢32)[17]. Now when we evaluate C,, we find
that the condition for it to remain finite in the limit T — T,, is that d > 5, ( i.e for
strings in 6 dimensions and above the fluctuations in the energy do not diverge in the
canonical ensemble). Of course the actual value of T,; depends also on the number of
dimensions.
We should think of T,; as the temperature at which our strings are formed,
T ~ o(THT) ~vn*m;} v~ 0(1) A> el
Then it follows T,; < T, (i.e strings lower the phase transition temperature) with
2
— % o) ,m=m,
= O(e?) - m=m,

The width of the strings at formation can now be calculated (~ mean separation)

my(T) = O(em,(T=0)) ,m=m,
= O(WAm,(T=0)) ,m=m,
That is the network of strings at the phase transition has the separation of the centers
of the flux tubes scaled up by a factor O(%), (e* < A), a result obtained by Kibble[3],
and discussed earlier in this lecture. This is a useful confirmation of the validity of

the Kibble mechanism. What has become clear from the analysis is that as we
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approach T, the mean field approach does not give the correct value for the critical
temperature. We predict a second order phase transition at Ty < T |meanfield- As the
symmetry is restored, overlapping strings fill the whole of space. It is possible that
thermal fluctuations cause a first order phase transition, indeed this has recently been
invoked(31] in an attempt to investigate fundamental strings in the early universe.
Above Ty, ~ O(TGinzburg ), our model is unable to recognise string like configurations.
As T, is approached the system becomes dominated by infinite string, with a scale
invariant distribution of loops approximated by Brownian trajectories. Neglecting all
interactions, actually implies Brownian trajectories, although it would be interesting
to discover-whether the simulations of[33] can detect this difference in Brownian versus
non self intersecting random walks. Below T, the system evolves to a state with an
exponentially suppressed distribution of large loops.

We now move onto investigate the evolution of cosmic strings. For a string of width
W and radius of curvature R, if R 3> W then the action for a string is approximately
a locally boosted version of the straight static solution. This is the Nambu action[21]:

S = —-u/ dodr[—detg))i , (15)

where gg) is the world sheet metric,( a,b = 0,1). In terms of the string coordinates

X*#(o,7) and the background spacetime metric:
gy = XtuX}ql) (16)

The Nambu action (15) also has the interpretation of being the area of the two
dimensional worldsheet. Corrections to the action and hence to the solutions to the
equations-of motion, are of O(*%.). Since for typical cosmic strings, W ~ 107%m, R ~
kpc the corrections are small everywhere except near a cusp where R ~ W[22].

A vital issue for string theory concerns what happens when two strings collide?
The Nambu action breaks down here, so the full non linear field equations must
be solved (10). This was first studied numerically for the case of global strings by
Shellard[23], who demonstrated that strings nearly always intercommute or exchange
partners, for relative velocities below -9. This is a very important result, as it is the
only process by which loops can form in sufficient amounts from an initial configura-
tion which contains nearly 80% of its length in infinite string. Analytical approaches
to this problem, including introducing gauge fields have been tried, but only for special

12



cases[25]. One interesting prediction that Turok and myself came up with{25], which
proved to be the case, was in showing that intercommuting always occurred when the
strings first intersected. Whether or not they effectively reconnected later, depended
upon the velocities of the new set of zeros that were produced in the interaction re-
gion. Basically four zeros would be produced after an initial intercommutation. These
would then start moving out, two chasing behind the pair that had intercommuted
and two in the direction the pair had before intercommutation. Depending on their
velocities the original pair would be caught and annihilated leaving the remaining
pair to carry on as if no intercommuting occurred. More often the ring of new zeros
~would not-catch-the original pair and would simply lose there energy as they spread
out. The full analytical problem remains unsolved. Matzner has studied the case of
local strings numerically and concluded they are even more likely to intercommute
when they cross than the global case[24]. An open question remains to be resolved-

what happens when two superconducting strings intercommute?

From (15), which is a purely geometrical object, we can write down the string
-equations of motion in say a flat Friedmann Robertson Walker universe (FRW). One
important point to note is that the equations are independent of y, the scale of the
symmetry breaking. Reparameterisation invariance of S under ¢ — #(o,7), 7 —

7(o, ) enables a suitable gauge to be chosen:

I8~

=T z.

where & = 0,2, £ = 8,z. Then the equations of motion become, in terms of the scale
factor a(n) (where dt? = a?(n)dn?),

a 18 .¢ a
2 4+2-(1—22)= ——(Z P e 932
£+ a(l z?) eaa(s) . é 2az:_e (18)

with

£ (19)

1-g

e=]
The energy in a string is

E= uav/da'e | (20)
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In general it isn’t possible to analytically solve these equations, but in certain
regimes it can be done.
1]. If R < damping term, then £ ~ 0, and the string is simply conformally stretched
with a radius of curvature > Hj'.
2. HRK § = Hy 1 then the string doesn’t notice the curvature of spacetime and

acts as if it was in flat space. We can set ¢ = 1, and the equations become

i = &
&d = 0 (21)
g +4 = 1
(22)
The general solution is made up of right and left moving modes:
1 .
z(r,0) = la(o = 7) + b0 + 7)] : (23)

with the gauge condition implying:
#=b=1

in the centre of mass frame of the string. Thus g, b are closed curves on the unit

sphere, generally intersecting if they are continuous{26]. In fact the picture for R < ¢,
is that loops of string break off the network of long string and oscillate as if in flat
space. At an intersection £ = 0, £* = 1 and such a point is a cusp ( defined by the
vanishing of detg?,). However as £ need not be continuous, such points where it isn’t
are called kinks. Four kinks are always producéd when a string intersects.

We can summarise the early string evolution picture. Initially 80% is in infinite
string. As the universe expands, the infinite strings chop off loops, (which sometimes
reconnect back onto an infinite string). These loops also self intersect until a class
of non-self intersecting loop solutions are reached. In general these loops are stable
against perturbations which could cause them to self intersect, (i.e from say matter
accreting around such a loop)[27]. Eventually these loops will be identified with the
galaxies and clusters of galaxies. Many problems remain unresolved. What is the
region of phase space which possess non-self intersecting loops? It has been shown
to be non zero, but if we want to predict the number of daughter loops an initial

parent loop will produce, we need to be able to answer that question. Progress
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towards answering this issue has recently been made in that it is now possible, by
studying just the kinks and cusps present on a loop- to place a lower bound on the
total number of times a given parent loop will self intersect[28]. How generic are
cusps on strings, and how do we deal with kinks are two more open questions? We
still need to know how the gravitational backreaction from an oscillating loop affects
its’ motion. Does it cause the loop to lose its’ periodicity? As yet no exact analytical
solution for a cosmic string in an expanding universe has been found, so there are
plenty of important analytical issues still to be resolved.

As the loops oscillate, due to their tension they decay primarily by emitting grav-
itational radiation[29]. Using the quadrupole formula, it is possible to estimate the
lifetime of the loop at about 10° oscillations. Currently work is in progress to accu-
rately deal with the backreaction on a loop due to it’s radiation.

The ‘loop production function’ is an important measurement device used in the
evolution scenario.. If the rate of loop formation from infinite strings is too small,
then the strings quickly dominate the total energy of the universe. As we have seen,
energy in strings longer than Hy', ( several per horizon volume), scales as a(t),
whereas energy in radiation scales as a™*(t). Thus 2= o @*(t) = t. These strings
must chop off a constant fraction of their length each expansion time into loops to
avoid this problem. The way this works is that the correlation length, {(¢) of an
infinite string at time t, is t. This is the condition for the scaling solution which is

vital if strings are not to dominate the universe. To see this we know at formation

P
string — = .
S &
Thus
Patring _ const if ¢ o t.
Prad

In a scaling solution the only length scale is Hy'. If events occurring 103 seconds
after the big bang are to explain events some 10 billion years later, we need some
sort of scaling if we are to be able to predict anything. Fortunately the numerical
results do show scaling[30], and analytically we can explain why small loops would
form rather than infinite string. It is due to the increased amount of phase space

available in flat space for loops[17,18].
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Another important issue which will hopefully soon be resolved in the numerical
simulations is the role of the smallest loops that are produced. Loops decay slowly,
so their density scales as matter, decreasing slower than in the long strings. This
means that small loops dominate the energy denmsity in strings. Once again the
importance of the chopping process terminating after a finite number of intersections
is demonstrated. We now have a distribution of loops with a scaling solution, the
only length scale is Hy ' and mass scale is g. What does this model have to offer with
regard to the formation of structure, how does matter accrete around these loops and

how efficiently? In the next lecture I will address these issues.

2 Lecture 2: Large Scale Structure

Most of the mass in the universe is dark, the evidence for this comes from many
quarters:

1]. The fact that the spiral galaxy rotation curves stay flat much further than their
visible radius implies Qnaio0 ~ Qectusters ~ 1 — -3

2]. Nucleosynthesis sets bounds on the baryonic matter [34], -04 < Qph}, < -14, yet
Quminous < *02. Thus most of the baryons are dark.

3]. Inflation predicts 1 should be close to one.

- Fortunately particle physics provides us with many potentially exotic sources for the
dark matter, these could be hot, (i.e neutrinos), cold (i.e axions), and they could be
supersymmetric[35].

Now the hot big bang is incomplete without a source of perturbations which were
essential to seed structures on large scales, especially as the universe was essentially
very isotropic and homogeneous early on. Initially we will investigate the demsity
. perturbations due to an infinite straight string[36]. Recall the action (15) [21]: -

S = —u [ drdo[-detg]} (24)
we can write the stress-tensor:

wig) — _ 2 §S
T+ (z) \/—g“(z) 89 (2) lo=n

= ufdo ( L@ ) £z ~2(o,7) (25)

* o'e? — 2*e?

For a straight static string along the z-axis, (o, 7) = (0,0, ¢), so:
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T#(z) = p52(x)diag(1,0,q,-1) (26)

Note the role of the negative pressure term, this gives the string its’ tension and
will prove important in the superconducting cosmic strings scenario[37]. What is the
effect of this string on the background metric? We write,

g,,,,(:c) = N + hull(m)a

which is valid provided | & |< 1. In the Harmonic gauge, (g°’Th5 = 0), Einsteins’

equations become
8h,, = —167G(Toy — %n‘,,,Tg‘) (27)

The time independent solutions have no Newtonian potential for koo, haa, (i.e V3hoo =

V?ha3 = 0). However we do obtain
hn = hgz = SG}LIH(:—O) (28)

where 7o is a suitable cut off introduced into the integral. Thus we find the line

element becomes:
ds® =dt* - d2* — (1 - SGy.In(rL))(dr2 + r2dg? (29)
0

Redefining

df = (1 — 4GuIn(L))dr
dd = (1 - 4Gu)dé

to obtain

ds? = dt? — dz? — (d* + 72dg) (30)

we see that the effect of the backreaction of the string on the spacetime is to leave
the metric flat everywhere except at the vertex; with-an accompanying missing angle,
0 < ¢ < 2r — 87mGu[36]. The spacetime is conical shaped with the string passing
through the vertex of the cone. However the gravitational attraction due to the
string on a static test particle is zero, as the particle effectively experiences a flat
spacetime. If the string is moving relative to the test particles, they will feel the
conical spacetime and be drawn in behind the string over an angle 2A¢ = 87Gy,
forming small wakes where Pwake = 2Pbackground as matter falls in on either side of the
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wake. I will mention observational consequences of this missing angle at the end.of
the lecture.

We saw in the previous lecture how most string ends up in loops. By the time
matter starts accreting around these loops they should be well inside the horizon,
r & Hy', so gravity should then be weak inducing small peculiar velocities, §v <
1. In this regime we can use linear perturbation theory(38]. Also on scales large
compared to their size, it is a good approximation to treat the loops as Newtonian
point particles[39]. Thus in the Newtonian approximation to Einsteins equations we

have for a particle at r(t), (for more details see[9]):
f=-V,® (31)

where the Newtonian potential obeys

V3@ = —4nGp (32)
For cold dark matter, (CDM), mass is conserved, so in a comoving volume
/ P8Veomoving = const (33)
The solution in a homogeneous background, pg(t) only is
3 — 4wGppr?
6
# - _A4Gpsr
- 3
per® = const (34)

In an Q = 1 universe, we find on integrating (34),

r o< t

_ 1
PB = 6rGt? : (35)

which is the standard FRW matter dominated universe.. Now we want to do linear

perturbation theory about this solution. Define a(t) = (ti)g where t; is the initial

time. Then
r(t) = a(t)r; | (36)

Thus ¢ = r; is the initial comoving coordinate of the particle. Giving each particle a

small comoving displacement ¥(z,t) we write

18



r(t) = a(t)(z + P(z,1)]
Mass conservation implies,
pid3z; = p(r)d®r
so using p; = ppa’, this implies

(r) = GSPB

d
2 |

From (37) we have:

p(z) = pp(1 — ¥o9p) + O(?)
Defining o

& _ (p(r) - p5)

p PB
we can write

= -V,

for the fractional density perturbation.
To solve for r(t), hence for ¥(z, t), substitute (39) into (31,32)

1d,,dd
2 —_ (e
Vee = r? dr(r dr
= —4rGp(r)
with
V.
(¥ ==—=)
and obtain
d®
262 2 _
r— 41rG/r drpp(1l — aV,.3)

Hence we find
V. = 47"GPB(§ — ay)

which when substituted in (31) gives

- 24
Y+ 71_&_ = 4rGppY
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Taking the homogeneous solution we find f x a~%. Now the peculiar velocity of a

test particle ( the physical velocity minus the Hubble flow) is,

. a
Vp = T —-T
b4 N
= t—-d(z+7)
= aﬂ'
or
vp X ;,

so a test particle slows down in comoving coordinates. We interpret the right hand
side of (42) as the gravitational instability, the feedback of the perturbation on itself.
For the case of the matter dominated FRW universe, i.e pp = E;'lcﬁv the solution to
(42) is

¥(=,t) = A(2)ts + B(z)t™ (43)

with A and Q arbitrary functions. Recalling (40) we see that épﬂ obeys the same

equation as 1, it has the same time behaviour. Thus
82 o a(t)

p

in the growing mode.

What happens in the case when thereis a local non-linear mass concentration? Isit
still correct to use the above equations which are only valid in the linear regime? The
answer turns out to be yes, provided the density perturbation is small on the surface
surrounding the mass concentration. To see this we follow an argument presented
- in [9]. Surrounding a volume V is a comoving surface S. The average density in a

comoving volume (for CDM) is, using (38)

vy = piVi
= pBa.s‘/,‘ (44)

where p is the average density, V;, V; are the final and initial volumes. Now we can
write V; = a®(V — §V) where

5V = /S $.dS ' | (45)
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Writing |

a*V; Jsv.dS
ﬁ=pr7rzpﬂ1+i%%—)+0w5
f i

we easily see

b Lsds
p Vi
x t3 in the growing mode (46)

In order to apply the linear regime to mass concentrations, we need linearity on 5,
not in V.,

Turning our attention back to peculiar velocities, recall
. G :
Vp=7T — (;)r = ay.

For the solution (43), in the growing mode, v, x t3. Now (43) also tells us that in
the growing mode, ¥  a, whereas from (37) we know

ﬂ'_" (L;E).
Hence
= (%)[z—al = Hdr | (47)

the equation used in lecture 1. The usefulness of (47) is that in particular geometries

v, is related to the magnitude of Qf. Defining the Hubble velocity, vy = Hr, write

L _d% (48)
vg T
In CDM scenarios we know mass is conserved in a comoving volume-(33)." Equation

(46) tells us that

6p _ J$.dS
p Vi
For planar collapse over a length scale L, Vg = HL, so
be _¥_ %
p L Vg
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For cylindrical collapse it is easy to see, (because V o 7?)

v _te
vg 29
and for spherical collapse, (V o r3),

v _ e
vg 3p
Recent observations of peculiar velocities give a unique window on %,3[40]. In partic-
ular for the ‘great attractor’, v, ~ 500kms~*, at L ~ 100h;4 Mpc gives Qpﬂ ~ -3.
So far we have thought only about linear collapse in a particular background.
What happens when we include sources, (e.g loops of cosmic string)[9]? On scales
large compared to the size of the loop, we can treat the loops as Newtonian point

particles. Equations (32,42) become

Vie = —477G(PB + Pwurce) (49)
- 2a 1
b+ =9 — 47Gppp = —Tioure (0)

A nice trick used to solve (50) is found by recalling that we really require épﬂ. Using

Gauss’s theorem to rewrite (46)

bp [ N4dV

=S (51)
we define § = V.9, and take the divergence of (50)

. 4 . 2 ,

) + 5{;5 - ':FS = 47I'G5p,w,-¢¢(§,t) (52)

This has a Green’s function solution,
5z t) = [ GGt )T psnrea(2 )
where |
G(t,¢) = g(t%(t')% — 1)),
 Now for a loop with comoving trajectory Z(t,o),

5Paouf¢e(t) = p,/ da.53(£ ;é()t,a'))
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which leads to the trumpet shape trajectories as the matter falls onto a loop and the
loop shrinks in comoving coordinates[41].

We move on to describe briefly the case of non - linear collapse. More complete
treatments can be found in [9], or in Brandenbergers review article[2]. Non-linear
collapse can only be solved for special geometries. The spherical collapse model is
ideal for the case r 3> Rjoop, Where Rigop is the radius of the loop and r is the distance
from the loop. Then the time averaged potential from the loop is
® = —g,ﬂ, where m is the mass of the loop. For v < 1, the Newtonian approximation
is good. In a matter dominated universe, the pressure vanishes, so one solves the
-equation for r(t). Defining M = m + M;, where M; is the mass inside a shell of radius
Ti

4 2r3

M‘- = - K :.3 = :
377" = G

in a matter dominated universe, we find in this approximation

2 GM
% - =const < 0 bound solution

> 0 escape

For an Q = 1 universe, then, const = 0, all the shells are bound to the loop. Imposing
the initial condition of unperturbed Hubble flow, 7;— H;r; = 0, the parametric solution
for small § = 3 is

. 7:(1 — cosf) ; 3t;(8 — sinf)

In the early stages of collapse,
32
6_p — 1‘_{(%)3 )3
p r
from the simple scaling of the universe as it expands. Also from M « 73,

5p t 2
—p— X 5‘(E) .

The radius r turns round when 6 = =, (¢ = 0), with % =(¥)P-1=4.5
The shell initially moves outwards with the expansion of the universe, slows down

under gravity and eventually collapses after reaching a maximum radius. Roughly
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speaking-at turnaround, all the energy is potential energy, P.E = —f":f' . The shell

recollapses eventually virialising (i.e kinetic energy = }P.Emaz). Therefore at viriali-

sation, Tyirial = “238. Knowing this we can write

% = 8.4 9 (22 (54)

mad

The factor of 8 comes from the collapse to =82, and the scale factor dependence is
from pp o a~3. From (54) we can estimate épﬂ loir for Abell clusters and galaxies. We
find for the case of CDM

L vir 150 with 1+ Z, ~ 1-5 (Abell Clusters)
p

%o lirze 10*~% with 1+ 2, ~ 6—13 (Galazies)

thus we now have an observational test for the theory(see Turok and Brandenberger
in[39]). Fitting todays values for the observed overdensities in Abell clusters, %‘-{M ~
170Q-1, with, Q@ = 1,h = -5, (i.e Abell clusters have only recently virialised), we
find that for cosmic strings to be consistent, it implies Gp ~ 2.10~8¥1, This fits
very well with the prediction of GUT scale symmetry breaking, (4 ~ 10'°Gev), yet
is independent of that result. With this value there are now no free parameters in
the theory, and it is possible to show how strings predict the correct masses of the
galaxies( see Turok and Brandenberger in [39]). The case of Hot Dark Matter is
different in the details of the calculation, and I advise interested readers to refer to
[9], and Brandenbergers article[2] for details.

Finally in this lecture I will discuss some of the observational tests of cosmic
string theory, tests on which the model will probably either succeed or fail. They
all require a determination of Gu. The first test I have already mentioned is the
gravitational lensing by strings[36], where an observer could see a double image of a
quasar or galaxy behind a cosmic string. The images would be separated by an angle
of 4nGu ~ 5", (the missing angle), for Gp ~ 1078, There are five or so reported
cases of lensing between 2.5 — 7. However a line of double images would be strong
evidence for the existence of a string.

Detection of anisotropy in the local microwave background radiation could be evi-
dence for cosmic strings, as first noted by Kaiser and Stebbins[15]. They realised that

strings produced a background temperature with steplike discontinuities on curves in
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the sky. As with the lensing, this relies on the canonical structure of spacetime near
a string. Light rays travelling on either side of the string produce a Doppler shift,
Av = 87Guv, in their frequency, v, is the transverse velocity of the string. Co-
moving frames on either side of the string move towards each other with a velocity,
v, ~ -4. Thus we find

éz = 8xGuv,y

< 2.10°°

which is almost at the level of accuracy we can now observe. Recently temperature
maps of a ‘stringy’ universe have been produced to show typical angular distributions
of the discontinuities, hence what the temperature distribution may typically look
like[42].

Possibly the tightest constraint on cosmic strings comes from the gravitational
radiation from loops of string[43,29,15]. Typically the energy density of radiation

from a loop, in terms of the logarithmic spectrum,
Qg(w) = wp(w)pg”,

(w = R~ is.the main frequency of radiation, po is the background energy density), is
Q,(w) = 2.1077hZ.

Now variations in the observed frequency of the millisecond pulsar, places the severest
restriction on Gp,
a

Gp < 10-5(1,—)8
yr

where a ~ 27, T, is the observation period in years. In principle we will soon be in
a position to confirm or rule out cosmic strings. However in practice we are reaching
the limits of reliability with the pulsar timing, both in-our knowledge of the dynamics
and content of the solar system and the accuracy of the atomic clocks we use to stan-
dardise things with. Both are reaching the limits beyond which we wouldn’t trust
conclusions inferred from their results. The latter problem could be overcome by
using a few pulsars and comparing their relative times, as they are the most accurate

clocks we know of. For the time being strings are still very much alive.
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The agreement Turok found between the correlation of Abell size loops and the
observation of the Abell clusters[44], created a great deal of interest in strings. Today
more observations are testing the theory. Will the Abell result remain both in the
simulations and the observations? What will the higher correlation functions look
like. Currently a great deal of observation time is going into investigating the large
‘scale structure of the universe, including things like 3pt correlation functions between
clusters, the distribution of bubbles, voids, filaments. The next few years will be
an exciting time in comparing the numerical simulations with observation. Work is
currently going on to investigate the growth of matter around a network of string,
at least in the linear regime. The full N-body problem is also being investigated.
One interesting result from strings is that it predicts correlation functions should be
universal, because of the scaling solution for strings.

Superconducting cosmic strings also produce possible correlations between clus-
ters of galaxies[5]. They could provide the most explosive evidence for strings, as we

shall see in the next lecture!

3 Lecture 3. Superconducting Cosmic Strings

In 1984, Witten[4] realised that in some models, ordinary cosmic strings could carry
.very-large .currents- along them, behaving like superconducting wires. The charge
carriers accounting for the current, could either be bosonic, where a charged Higgs
field has an expeéta.tion value in the core of the string, or fermionic where charged
fermions are trapped as zero modes along the string.

In this lecture I will concentrate mainly on the case of bosonic superconduct-
ing cosmic strings, although I will discuss some of the results of the fermionic case.
Several astrophysical consequences of the superconducting cosmic strings have been
- suggested[4,5,45,46,47). We will review these consequences, explain how to obtain
and understand the motion 0f{37,48], and radiation from[49,48,50] superconducting
cosmic strings. What will become apparent is the importance of the current to the
equations of motion, and the fact that the total radiation from the loops is finite{50]
contrary to previous estimates. '

First of all, let us see how superconducting cosmic strings arise[4]. In lecture 1,

we investigated the complete breaking of an Abelian group G=U"(1) with lagrangian
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(10)
1 v 1 2 A 2 2\2
[’[¢’Au] = _ZFMVF“ + '2' I D#¢ l —EU d" I -7 ) (55)

Instead of this U’(1) theory, we consider a U’(1) X U(1)em where the U’(1) symmetry is
broken in the true vacuum producing strings as before, but the ¢ field is now coupled

to an electrically charged x field:

1 1
Ll Ry X Apl = = Fl, = 7RLA+ [ Dud I +1 Dux [ =V(4:%) (56)
where
_ Ay 2 22 A 2 2 2
Vigsx) =7 ¢1" =n') + 5 Ix[* +2a(| ¢ [F =m%) | x| (57)

with F,, = 0, 4,), R, = O R,
Dux = (0 + ted,)x, Du¢ = (3,, + i.qRu)ﬁb
Initially U(1)em is unbroken, whereas U’(1) is broken producing the usual cosmic

strings. To ensure electromagnetism is unbroken outside the string,

1’<1 MA2  mt
7 =

2 /\g > 1]_4‘

The potential is then minimised with < x >= 0, (electromagnetism unbroken) and
|< ¢ >|= 5 (U'(1) spontaneously broken) in the vacuum. However as we know from
figure 1, < ¢ >= 0 in the core of the string. The potential (57) for x then has the
symmetry breaking form and forces x to be non zero in the core. In fact we find

.couplings, a x condensate does exist on the string(4,52,51,53,54]. We will return to

< x >~ {/2m in the core. It is easy to demonstrate that for some range of the

this point later.

Our solutions are constructed around an arbitrary curved worldsheet with space-
. time coordinates z#(0?), where o® = (7, o) are the two worldsheet coordinates. Given
such a worldsheet we construct two spacelike normal vectors, n(c) (A = 1,2) which
everywhere obeys nz, . = 0. We choose them to be orthonormal (nYin.p = —645).
For any point y in spacetime closer to the string than it’s radius of curvature, we can

associate two worldsheet coordinates o and two radial coordinates p4:

y* = z#(q) +ny(o)p*
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x = xo(p) in the condensate. Now if xo(p) minimises the energy of the string, so
does efxo(p) for any real constant phase §, although x then carries no current. What
Witten noticed was that at little energetic cost, the string had low energy excitations

of the form:

x(p, 2,t) = €= xo(p) (58)

which led to persistent currents in the string. Substituting (58) into the static straight
string solution along the z- axis, there is an extra contribution to the string action
(56):

AS, = / dod*py/—7 | Dax |*
= K / B2/ (8,0 + ieA)(8s8 + ieds) - (59)

where K = [ d?p | x3(p) |*. The term | D4xo(p) |* is included in the definition of g,
(compare (11)), and to O(p) we are left with the | D,x |? term in (59). Assuming the

gauge field A, varies slowly across the string, we have used
Aa(0) = 2/, Au(2())

Since

A3
Xo~ /™

Az
in the core of the string, and the width of the x condensate
~t
VAgm?
from (57), we estimate K ~ ;1;

The electromagnetic current

J, = —'5(—?%) = —2eK (8,0 + eAa) (60)

enables us to rewrite (59),

1 ai
AS = / P A (61)
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Now the superconducting property of the string arises because the total change in 4
around the loop is conserved as long as | x | does not go to zero, (i.e does not hop over
the potential barrier) in the core of the string. The topologically invariant quantity

is the winding number N,

1 o0

N=§;}(dl§7 . (62)
where | is a parameter along the string. Despite being the integral around a closed
loop of the derivative of #, N need not vanish, as § is defined moduli 27. N can
be any integer. Thus from (60,62), if a situation is set up where N#0, then J; # 0
corresponds to.the ground state of the string carrying current. The winding of § can
change through the quantum tunneling of the x field, so the current carrying state is
metastable[4,52,51,53,54]. However for natural values of the coupling constants this
is exponentially suppressed.

Maxwells equations enable us to determine the gauge field 4, in terms of 8,4. In
the Lorentz gauge, 8,4* = 0, these read[4,50],

8AM(y) = / o/ 5864(2(0) — y)J*Baz
) (63)
This has a solution in terms of the retarded Greens function,
G*(y) = 5-8")0°)
We find that for a loop with radius of curvature R, string width W, in the regime
& > 1, (i.e typically),

A (2(o)) = %In(—v%)J“aaz“(a') (64)

=1, Now-for a

as the leading term. The next order terms are down by O(In(Z)
wire of width W, carrying a uniformly distributed current J, (64) tells us the gauge
field interior to the surface A7 = Ao + (%)%, where Ao is the value of the field at
the centre of the string. So the variation of A across the string is O(p’;,—z,) which is

negligible as previously assumed. Putting (64) into (60) we find that on the string
Ja = 2eK,,ef6,,0

A, = _(Keff)aaa

T

_ K
1+ Emg)

(65)

Kty
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formula originally derived in [4] for a straight string. Typically Kess ~ -25, ( needed
for loops to last a cosmologically significant length of time),with gem ~ o 1 n(&) ~
100.

This still isn’t the full story to the correction to the action. So far we have obtained
AS,, and J,, A, in terms of 8,0. Equation (56) reminds us of the electromagnetic

contribution of the superconducting cosmic string action.
1
S = L [aym e
1 .
= E/d'*yA“azA” in the Lorentz gauge. (66)

As previously we solve Maxwells’ equations for A, in terms of J,, hence J, to
obtain(50]

— 1 R 2 ab
ASem = 1-In(3) / Lo/ Ty (67)

as the leading local contribution to the string action. Adding (67) and '(61) and
rescaling the current, we find that the action for superconducting cosmic strings in
the absence of external magnetic fields to be[37]

S = - [ @oy=AlL - 15ui] (68)

A

Ja = J—s
Here j, is a dimensionless string current. Js will prove to be the string saturation
current. Under what conditions is (68) valid? Certainly not in regions where B ~ W,
i.e kinks or cusps. It ignores non- local self interactions of the string with itself, by
radiation from one part affecting another part of the string. Actually these affects
are down by a factor (In(;}))™ ~ -02. For the case of the infinite strings, we have
dropped surface terms in S, which makes (68) invalid[55,53]. The affect is to add
extra terms to the stress tensor. We also assumed the existence of the current on the
string did not affect xo(p) which was taken to be independent of J. This approximation
is good in regions of parameter space where the Higgs coupling in (57) takes natural
values, (i.e not small relative to e?). Outside these regions, one must investigate the
Fontribution case by case. We can safely say that (68) is valid to all orders in natural
regions of parameter space. It agrees to O(j2) with that based on a Kaluza- Klein

~ construction[56)], however their action is valid only for small j.
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Before discussing solutions to (68), we will review some of the proposed astro-
physical consequences of superconducting cosmic strings. Chudnovsky et al.[45] con-
sidered their affect on plasma, estimating the synchrotron emission and radiation
from shock heating. Massive strings with Gu ~ 1078, have been invoked by Os-
triker, Thompson and Witten, [OTW][5], as the power sources for giant explosions.
We will look more closely at their very attractive scenario here. The recent survey
of the northern sky[8] seems to indicate that galaxies are found on the surfaces of
bubbles of the size~ 20h;4 Mpc, the surfaces surrounding voids which are apparently
empty of galaxies. So far there has been no real explanations from ordinary cosmic
-strings - forthe existence of these bubbles or voids, (I should point out here, as more
data is being taken, some of the voids are beginning to close in, proving to be not
as empty as was first thought). However superconducting cosmic strings do seem to
offer a natural explanation for these voids. We know that as loops oscillate, gravita-
tional waves are radiated with a luminosity, L, = v,Gp?, causing the loop to shrink,
(v, ~ 50 — 100 independent of the loop size). Now because superconducting cosmic
strings carry an electrical current, J < Jmaz ~ €,/g, an oscillating loop will also
emit electromagnetic radiation. We can generally write the electromagnetic luminos-
ity, Lem = Yemj’k, where j = —2—, v.m ~ 10, again independent of size. Later

Jms- !

we will see how the string equations of motion modify the power radiated. OTW
show that for Gir~ 108, L., > L, if j ~ -2. We have already seen from (62,65),
once a loop is initially threaded by an external electromagnetic field which is then
removed, a current is induced in the loop, trapping a fraction of the flux of order
one. Conservation of N ensures that flux is conserved. Now as the loop oscillates, it
shrinks; as the radius R; of the loop decreases (62) tells us J will scale as J o« Rj’'.
Thus in theory even if the initial current Ji € Jmazy Lem eventually dominates L,.
The very low frequency waves emitted by the loop can not propagate through the
plasma, the ambient plasma frequency is 13 or so orders of magnitude greater than
that of the emitted waves. Thus each loop blows a bubble around it to a final radius
R, x j,-%p.%(l + zd)f—:M pc[5]. The loops heat up their surroundings, generating large
dense shells of gas, the galaxies form on these gravitationally unstable shells with
their present distribution representing the distribution of bubbles when fragmenta-
tion occurred. The technical details of the calculation can be found in [5]. They find
that for
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R, ~ 10 — 20h~*Mpc, in agreement with [8]. Dark matter remains inside the voids,

-3
|initiatiy> 1077,

if it is cold then it can not catch up the expanding shells of gas, indicating that
local dynamical measurements of  in the vicinity of galaxies and clusters will be a
significant underestimate of the true value. As the loop continues to shrink, J —
Jmaz. The string saturates, producing high energy cosmic rays, charged particles,
photons, neutrinos and possibly as yet unknown physics. Bose carriers lead to a first
order phase transition and a non superconducting state, at Jmaz ~ 10%° amperes
for GUT ‘models.- In a typical case the energy released electromagnetic radiation
is 10%® ergs=! or 10% erg in total. When the current saturates, a loop will emit
vast amounts of particles. The loop may be seen as a high energy x-ray source at
z ~ 10 —50. Such loops will also contribute to the hard x-ray and y-ray backgrounds,
aswel as the 10%%ev cosmic rays. One possible problem this scenario faces, is how to
obtain the primordial magnetic fields. With Gu-~ 108, they require the primordial
energy density in magnetic fields ~ 3.10® of the radiation energy densitgr to induce
large enough currents. No natural mechanism exists to generate such large magnetic
fields.. Random fluctuations in the x field on the string, will induce a very small initial
current as we shall see.

- Vilenkinand Field[46] proposed that loops of superconducting cosmic strings which
possess cusps emit short bursts of highly directed electromagnetic radiation from these
regions, possibly accounting for the jets observed in quasars, formed from accelerated
particles. The loops of cosmic strings provide the central engines of the quasars. The
calculation is based on the assumption that the mean power radiated from super-
conducting cosmic strings at current j is, P o j %, and is dominated by short cusp
bursts[48,49]. This relationship and the effect of current on cusps will be discussed
later. The total power emitted is estimated at ~ 10%? erg.

Returning to the action for the superconducting cosmic strings, (68), we will now
look at the equation of motion and obtain solutions[37]. Then we will look at the radi-
ation from these solutions and compare the answers with previous estimates(48,49,50].

The variation with respect to 4 and z* yield

Ba(vV/=11%5s) = 0 aa(\/:(ﬁ’ab + 0%)gz*) = 0 (69)

where the world sheet energy momentum tensor is defined by
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Choosing the orthonormal gauge, Yor = 0,%ss + ¥r» = 0 then using (65) in (69) we

@ab

= 2j°5® — 1(5%) (70)

obtain
(82— 62)6 =0 or 8= flo+7)+g(o—7) (11)

with f and g arbitrary functions. Now the orthonormal gauge is invariant under the

coordinate transformation,

2
c+T S T+T= Zf(0'+1')

o r—»ﬁ—?‘—z (e—1)

so in those coordinates, § = A7 only, provided the current is non-zero everywhere.

We have from (65)

) ) K. X
jo =0, .’11=—A\/%=J (72)

and (69) becomes
dr[(1 = 715)8,2*] = 8,((1 +7"5%)0r2"] (73)
7 = [(8.2*)] (74)

Now if (8,2)? + j2 = 0, then we have the solution 2° = j7, £ = z(0), an arbitrary
function subject to the above condition. These arbitrary static curves are called
‘springs’[37]. What is happening is that the positive pressure contributed by the

current cancels the string tension. This may be seen from the stress tensor

™ = _zﬁ_ '
6N
— p/dza "——7(1“5+®“b)36z“352"54(2:“—:D“(O')) (75)

In our gauge, for a loop of large radius of curvature, we approximate it as a straight
line in the z- direction, i.e z* = (r,0,0,0). We then have

T* = ué?*(z)diag(l + j2,0,0,1 — %) (76)
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This result differs from[55], as mentioned earlier. Really there will be surface terms
contributing to T,,, Tss in the case of the infinite string. For j = ﬁ = 1, the
negative pressure or string tension term is cancelled, leaving effectively a line of
pressureless dust. This is the significance of Js. It appears that as the current
approaches the critical value, springs will form, they behave as matter and will not
decay for they have stopped oscillating. This is potentially disasterous and in fact
was first mentioned by OTW(5,37]. If the current density is non zero, we can not
have ‘cusps’ in superconducting cosmic strings, for as & — 0,7 — oo, yet y11j2 =1
is a gauge condition.

Another class of solutions are oscillating loops which are also solutions to (73)[50].

For 2? = const, zo = T, we have,
_5:_ —_ ,uzgn
where,
-3
,_ 1@
v = =
1+ 4

with the general solution
1
z(0,7) = (3)la(o +v7) + (o — v7)] (77)

The gauge conditions imply

_ 2
T 1402

2

o

i =

=¢? (78)
when we impose the condition 4.b=0. Thus ¢ and b are curves lying on a sphere of
radius ¢. They are periodic with zero centre of mass. Solutions of this type have been
found for ordinary cosmic strings [49]. They possess kinks, where the £ derivative is
discontinuous. The simplest kinky loop has 4 being two points, the north and south
pole, b two antinodal points on the equator. From (77,78) we find £* = ﬁ,—, hence

we have

3 (1 + 852 —(1+2j2)
o= LT (79)
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The effect of the current has been to reduce the velocity of wave propagation on the
string to v? < 1. As j increases, v decreases until v = 0 when 3% =1, the kinks do not
propagate around the loop and we are in the realm of springs. The fact the current
slows down the kinks is enough to make the power radiated from the oscillating loop
finite. Previous estimates at the electromagnetic radiation from loops have assumed
they obey a Nambu trajectory. This has led to infinite answers for the total power,
hence the introduction of cut offs into the answers[49,48]. Yet we have seen the
dramatic effect the current has on the motion of the loop. Using the solution (77,78)

we were able to evaluate exactly the power radiated from a kinky loop, and obtained

dP ., PRI
a0 <3 =3 In(3)

which is finite for both small and large j. In fact the total power radiated is also
finite, tending to zero as j — 0, and as j — 1. The explanation is simple. It comes
from the fact that kinks slow down producing springs as j — 1. The overall result
turns out to be far less power than previous estimates gave, making the quasar jet
scenario difficult to reconcile with these string solutions.

We have seen a simple argument that radiation from loops and their consequent
shrinkage leads to a build up in current.. Basically because the total winding number
of the # field is fixed, (barring tunneling events), j o V8. As the loop loses energy

it shrinks, therefore V4 rises. This result is important in the OTW scenario, where
" whatever the primordial magnetic field (Bprimordiat) is, eventually a loop will radiate
away lots of electromagnetic radiation. This power, Pem ~ Lempj? dominates the
gravitational radiation, P, ~ T,Gu? for j > /Gp ~ 1073, Thus j > 1072 for any
interesting effects. However when j=1, springs form, so we require 107 < j. < 1. We
know that as j — 1 the Nambu action acquires corrections, what about the region
close to the lower limit? Recall J, = 2eK.;;8.0. If any region has V4 > V4., it will
turn critical and lose its’ current. This translates into if | £ |< T%-—in that region,
current will be lost. Now for small j. the motion of the loop should be nearly Nambu,
allowing cusp like regions where | £ |~ 0. These regions will lose current. Meanwhile
the loop shrinks an amount AL ~ [',GuL every period, L is the length of the loop.
‘Thus there is a current gain due to radiation from the loop and a competition
4 7

z't' loas= .cL
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There exists a stable fixed point at j ~ 10~%j, when % = 0{50]. This value is too
small to cause the explosions required, hence would imply large initial currents-or
primordial magnetic fields, as loop shrinkage appears to lead to current loss, not
Buildup. '

Many of the possible problems with superconducting cosmic strings lie in the
observation that they like to form springs. This of course is model dependent, so
given the region of parameter space in which superconducting cosmic strings form,
what fraction of these solutions will be springs? Many authors have tackled this
issue[52,53,51,54], and come up with a wide cross section of conclusions. A common
result is that springs can form, but do not have to. However, it appears that if
we demand that superconducting cosmic strings remain around long enough to be
cosmologically interesting (K > 20), this constrains the parameters in the Higgs
potential, the result being that such loops with long lived currents are generically
springs (i.e exist for a wide range of 33)[51].

Recently solutions have been discussed in which the string possesses charge jo
aswel as current j;[57]. These objects are a kind of cross breed between the usual
spring solutions and the non-topological soliton solutions, in that the presence of
a conserved charge enables the strings to be stabilised for a much lower current
than is required to form springs (for couplings A3 > 1). These ‘vorton’ solutions if
stable against decay, would behave as matter, and very quickly come to dominate
the energy density of the universe, a big problem for the explosion scenario, and for
superconducting cosmic strings in general. Again by carefully choosing the coupling
constants, like springs, vortons could be avoided..However cries of ‘fine tuning* may
well then be heard.
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